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(a) A frame in animation “Garden of words” (b) A real photo processed by our method

Figure 1: Comparison between a real cartoon image and an image processed by our method.

Abstract
This paper presents an approach for image cartooniza-

tion. By observing the cartoon painting behavior and
consulting artists, we propose to separately identify three
white-box representations from images: the surface rep-
resentation that contains a smooth surface of cartoon im-
ages, the structure representation that refers to the sparse
color-blocks and flatten global content in the celluloid style
workflow, and the texture representation that reflects high-
frequency texture, contours, and details in cartoon im-
ages. A Generative Adversarial Network (GAN) framework
is used to learn the extracted representations and to car-
toonize images.

The learning objectives of our method are separately
based on each extracted representations, making our frame-
work controllable and adjustable. This enables our ap-
proach to meet artists’ requirements in different styles and
diverse use cases. Qualitative comparisons and quanti-
tative analyses, as well as user studies, have been con-
ducted to validate the effectiveness of this approach, and
our method outperforms previous methods in all compar-
isons. Finally, the ablation study demonstrates the influence
of each component in our framework.

1. Introduction
Cartoon is a popular art form that has been widely ap-

plied in diverse scenes. Modern cartoon animation work-
flows allow artists to use a variety of sources to create con-
tent. Some famous products have been created by turning
real-world photography into usable cartoon scene materials,

where the process is called image cartoonization.
The variety of cartoon styles and use cases require task-

specific assumptions or prior knowledge to develop usable
algorithms. For example, some cartoon workflows pay
more attention to global palette themes, but the sharpness of
lines is a secondary issue. In some other workflows, sparse
and clean color blocks play a dominant role in artistic ex-
pression, but the themes are relatively less emphasized.

These variants pose non-trivial challenges to black-box
models, e.g., [20, 48, 6], when faced with diverse demands
of artists in different use cases, and simply change the train-
ing dataset does not help. Especially, CartoonGAN [6] is
designed for image cartoonization, in which a GAN frame-
work with a novel edge loss is proposed, and achieves good
results in certain cases. But using a black-box model to di-
rectly fit the training data decreased its generality and styl-
ization quality, causing bad cases in some situations.

To address the above-mentioned problems, we made ex-
tensive observations on human painting behaviors and car-
toon images of different styles, and also consulted several
cartoon artists. According to our observations, which is
shown in Figure 3, we propose to decompose images into
several cartoon representations, and list them as follows:

Firstly, we extract the surface representation to repre-
sent the smooth surface of images. Given an image I ∈
RW×H×3, we extract a weighted low-frequency component
Isf ∈ RW×H×3, where the color composition and surface
texture are preserved with edges, textures and details ig-
nored. This design is inspired by the cartoon painting be-
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Figure 2: A simple illustration of our method. Images are
decomposed into three cartoon representations, which guide
the network optimization to generate cartoonized photos.

havior where artists usually draw composition drafts before
the details are retouched, and is used to achieve a flexible
and learnable feature representation for smoothed surfaces.

Secondly, the structure representation is proposed to ef-
fectively seize the global structural information and sparse
color blocks in celluloid cartoon style. We extract a seg-
mentation map from the input image I ∈ RW×H×3 and
then apply an adaptive coloring algorithm on each seg-
mented regions to generate the structure representation
Ist ∈ RW×H×3. This representation is motivated to em-
ulate the celluloid cartoon style, which is featured by clear
boundaries and sparse color blocks. The structure repre-
sentation is of great significance for generating the sparse
visual effects, as well as for our method to be embedded in
the celluloid style cartoon workflow.

Thirdly, we use the texture representation to contain
painted details and edges. The input image I ∈ RW×H×3 is
converted to a single-channel intensity map It ∈ RW×H×1,
where the color and luminance are removed and relative
pixel intensity is preserved. This feature representation is
motivated by a cartoon painting method where artists firstly
draw a line sketch with contours and details, and then apply
color on it. It guides the network to learn the high-frequency
textural details independently with the color and luminance
patterns excluded.

The separately extracted cartoon representations enable
the cartooniaztion problem to be optimized end-to-end
within a Generative Neural Networks (GAN) framework,
making it scalable and controllable for practical use cases
and easy to meet diversified artistic demands with task-
specific fine-tuning. We test our method on a variety of real-
world photos on diverse scenes in different styles. Experi-
mental results show that our method can generate images
with harmonious color, pleasing artistic styles, sharp and
clean boundaries, and significantly fewer artifacts as well.
We also show that our method outperforms previous state-
of-the-art methods through qualitative experiments, quanti-
tative experiments, and user studies. Finally, ablation stud-
ies are conducted to illustrate the influence of each repre-
sentation. To conclude, our contributions are as follows:

Figure 3: Common features of cartoon images: 1. Global
structures composed of sparse color blocks; 2. Details out-
lined by sharp and clear edges; 3. Flat and smooth surfaces.

• We propose three cartoon representations based on our
observation of cartoon painting behavior: the surface
representation, the structure representation, and the
texture representation. Image processing modules are
then introduced to extract each representation.

• A GAN-based image cartoonization framework is op-
timized with the guide of extracted representations.
Users can adjust the style of model output by balancing
the weight of each representation.

• Extensive experiments have been conducted to show
that our method can generate high-quality cartoonized
images. Our method outperforms existing methods in
qualitative comparison, quantitative comparison, and
user preference.

2. Related Work
2.1. Image Smoothing and Surface Extraction

Image smoothing [37, 14, 10, 29, 5] is an extensively
studied topic. Early methods are mainly filtering based [37,
14] and optimization-based methods later became popular.
Farbman et al. [10] utilized weighted least square to con-
strain the edge-preserving operator, Min et al. [29] solved
global image smoothing by minimizing a quadratic energy
function, and Bi et al. [5] proposed an L1 transforma-
tion for image smoothing and flattening problem. Xu and
Fan et al. [44, 9] introduced end-to-end networks for image
smoothing. In this work, we adapt a differentiable guided
filter [42] to extract smooth, cartoon-like surface from im-
ages, enabling our model to learn structure-level composi-
tion and smooth surface that artists have created in cartoon
artworks.

2.2. Superpixel and structure Extraction
Super-pixel segmentation [11, 31, 30, 2] groups spatially

connected pixels in an image with similar color or gray
level. Some popular superpixel algorithms [11, 31, 30] are
graph-based, treating pixels as nodes and similarity between
pixels as edges in a graph. Gradient ascent based algo-
rithms [7, 40, 2] initialize the image with rough clusters
and iteratively optimize the clusters with gradient ascent un-
til convergence. In this work, we follow the felzenszwalb
algorithm [11] to develop a cartoon-oriented segmentation
method to achieve a learnable structure representation. This
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Figure 4: Our proposed image cartoonization system

representation is significant for deep models to seize global
content information and produce practically usable results
for celluloid style cartoon workflows.

2.3. Non-photorealistic Rendering
Non-photorealistic Rendering (NPR) methods represent

image content with artistic styles, such as pencil sketch-
ing [43, 28], paints [12, 20], watercolor [39]. Image car-
toonization is also extensively studied from filtering based
method [34] to end-to-end neural network [6], covering the
use cases of photos [6], videos [41], and portraits [45].

Neural Style Transfer methods [12, 20, 8, 16] are pop-
ular among NPR algorithms, which synthesis images with
artistic style by combining the content of one image and the
style of another image. Gatys et al. [12] jointly optimized
a style loss and a content loss to generate stylize images
with a style-content image pair. Johnson et al. [20] acceler-
ated stylization by training an end-to-end network with per-
ception loss. Several works [8, 16] later proposed different
methods to stylize images.

NPR methods are also widely used in image abstraction
[24, 21]. These methods highlight semantic edges while
filtering out image details, presenting abstracted visual in-
formation of original images, and are commonly used for
cartoon related applications. Our method, different from
style transfer methods that use a single image as reference
or image abstraction methods that simply consider content
images, learns the cartoon data distribution from a set of
cartoon images. This allows our model to synthesis high-
quality cartoonized images on diverse use cases.

2.4. Generative Adversarial Networks
Generative Adversarial Network(GAN) [13] is a state-

of-the-art generative model that can generate data with the
same distribution of input data by solving a min-max prob-

lem between a generator network and a discriminator net-
work. It is powerful in image synthesis by forcing the gener-
ated images to be indistinguishable from real images. GAN
has been widely used in conditional image generation tasks,
such as image inpainting [32], style transfer [33], image car-
toonization [6], image colorization [46]. In our method, we
adopt adversarial training architecture and use two discrim-
inators to enforce the generator network to synthesize im-
ages with the same distribution as the target domain.

2.5. Image-to-Image Translation
Image-to-Image Translation [19, 17, 25, 48] tackles the

problem of translating images from a source domain to an-
other target domain. Its applications include image qual-
ity enhancement [18], stylizing photos into paints [20, 33],
cartoon images [6] and sketches [26], as well as grayscale
photo colorization [47] and sketch colorizaiton [46]. Re-
cently, bi-directional models are also introduced for inter-
domain translation. Zhu et al. [48] performs transformation
of unpaired images(i.e. summer to winter, photo to paints).

In this paper, we adopt an unpaired image-to-image
translation framework for image cartoonization. Unlike
previous black-box models that guide network training with
loss terms, we decompose images into several represen-
tations, which enforces network to learn different features
with separate objectives, making the learning process con-
trollable and tunable.

3. Proposed Approach
We show our proposed image cartoonizaiton framework

in Figure 4. Images are decomposed into the surface repre-
sentation, the structure representation, and the texture rep-
resentations, and three independent modules are introduced
to extract corresponding representations. A GAN frame-
work with a generator G and two discriminators Ds and Dt



is proposed, where Ds aims to distinguish between surface
representation extracted from model outputs and cartoons,
and Dt is used to distinguish between texture representa-
tion extracted from outputs and cartoons. Pre-trained VGG
network [35] is used to extract high-level features and to im-
pose spatial constrain on global contents between extracted
structure representations and outputs, and also between in-
put photos and outputs. Weight for each component can be
adjusted in the loss function, which allows users to control
the output style and adapt the model to diverse use cases.

3.1. Learning From the Surface Representation
The surface representation imitates cartoon painting

style where artists roughly draw drafts with coarse brushes
and have smooth surfaces similar to cartoon images. To
smooth images and meanwhile keep the global semantic
structure, a differentiable guided filter is adopted for edge-
preserving filtering. Denoted asFdgf , it takes an image I as
input and itself as guide map, returns extracted surface rep-
resentation Fdgf (I, I) with textures and details removed.

A discriminatorDs is introduced to judge whether model
outputs and reference cartoon images have similar surfaces,
and guide the generator G to learn the information stored
in the extracted surface representation. Let Ip denote the
input photo and Ic denote the reference cartoon images, we
formulate the surface loss as:

Lsurface(G, Ds) = logDs(Fdgf (Ic, Ic))

+ log(1− Ds(Fdgf (G(Ip),G(Ip))))
(1)

3.2. Learning From the Structure representation

The Structure representation emulates flattened global
content, sparse color blocks, and clear boundaries in cel-
luloid style cartoon workflow. We at first use felzenszwalb
algorithm to segment images into separate regions. As su-
perpixel algorithms only consider the similarity of pixels
and ignore semantic information, we further introduce se-
lective search [38] to merge segmented regions and extract
a sparse segmentation map.

Standard superpixel algorithms color each segmented re-
gion with an average of the pixel value. By analyzing the
processed dataset, we found this lowers global contrast,
darkens images, and causes hazing effect on the final results
(shown in Figure 5). We thus propose an adaptive coloring
algorithm, and formulate it in Equation 2, where we find
γ1 = 20, γ2 = 40 and µ = 1.2 generate good results. The
colored segmentation maps and the final results trained with
adaptive coloring are shown in Figure 5, this effectively en-
hances the contrast of images and reduces hazing effect.

Si,j = (θ1 ∗ S̄ + θ2 ∗ S̃)µ (2)

(θ1, θ2) =


(0, 1) σ(S) < γ1,

(0.5, 0.5) γ1 < σ(S) < γ2,

(1, 0) γ2 < σ(S).

(a) Segmentation with average color (b) Segmentation with adaptive color

(d) Result with adaptive color(c) Result with average color

Figure 5: Adaptive coloring algorithm. (a) and (b) show
segmentation maps with different coloring method, while
(c) and (d) shows results generated with different color-
ing method. Adaptive coloring generates results that are
brighter and free from hazing effects.

We use high-level features extracted by pre-trained
VGG16 network [35] to enforce spatial constrain between
our results and extracted structure representation. Let Fst
denote the structure representation extraction, the structure
loss Lstructure is formulated as:

Lstructure = ‖VGGn(G(Ip))− VGGn(Fst(G(Ip)))‖ (3)

3.3. Learning From the Textural Representation
The high-frequency features of cartoon images are key

learning objectives, but luminance and color information
make it easy to distinguish between cartoon images and
real-world photos. We thus propose a random color shift
algorithm Frcs to extract single-channel texture representa-
tion from color images, which retains high-frequency tex-
tures and decreases the influence of color and luminance.

Frcs(Irgb) = (1−α)(β1∗Ir+β2∗Ig+β3∗Ib)+α∗Y (4)

In Equation 4, Irgb represents 3-channel RGB color im-
ages, Ir, Ig and Ib represent three color channels, and Y
represents standard grayscale image converted from RGB
color image. We set α = 0.8, β1, β2 and β3 ∼ U(−1, 1).
As is shown in Figure 4, the random color shift can generate
random intensity maps with luminance and color informa-
tion removed. A discriminator Dt is introduced to distin-
guish texture representations extracted from model outputs
and cartoons, and guide the generator to learn the clear con-
tours and fine textures stored in the texture representations.

Ltexture(G,Dt) = logDt(Frcs(Ic))
+ log(1− Dt(Frcs(G(Ip))))

(5)

3.4. Full model
Our full model is a GAN based framework with one

generator and two discriminators. It is jointly optimized
with features learned from three cartoon representations and



Figure 6: The sharpness of details could be adjusted by style
interpolation. δ = 0.0, 0.25, 0.5, 0.75, 1.0 from left to right.

could be formulated in Equation 6. By adjusting and bal-
ancing λ1, λ2, λ3 and λ4, it could be easily adapted to vari-
ous applications with different artistic style.

Ltotal = λ1 ∗ Lsurface + λ2 ∗ Ltexture
+ λ3 ∗ Lstructure + λ4 ∗ Lcontent + λ5 ∗ Ltv

(6)

The total-variation loss Ltv [4] is used to impose spa-
tial smoothness on generated images. It also reduces high-
frequency noises such as salt-and-pepper noise. In Equation
7, H, W, C represent spatial dimensions of images.

Ltv =
1

H ∗W ∗ C
‖ 5x (G(Ip)) +5y(G(Ip))‖ (7)

The content loss Lcontent is used to ensure that the car-
toonized results and input photos are semantically invariant,
and the sparsity of L1 norm allows for local features to be
cartoonized. Similar to the structure loss, it is calculated on
pre-trained VGG16 feature space:

Lcontent = ‖VGGn(G(Ip))− VGGn(Ip)‖ (8)

To adjust sharpness of output, we adopt a differentiable
guided filter Fdgf for style interpolation. Shown in Fig-
ure 6, it can effectively tune the sharpness of details and
edges without fine-turning the network parameters. Denote
the network input as Iin and network output as Iout, we
formulated the post-processing in Equation 9, where Iin is
used as guide map:

Iinterp = δ ∗ Fdgf (Iin,G(Iin)) + (1− δ) ∗ G(Iin) (9)

4. Experimental Results
4.1. Experimental Setup

Implementation. We implement our GAN method with
TensorFlow [1]. The generator and discriminator architec-
tures are described in the supplementary material. Patch
discriminator [19] is adopted to simplify calculation and en-
hance discriminative capacity. We use Adam [23] algorithm

Methods [20] [6] [48] Ours
LR, CPU(ms) 639.31 1947.97 1332.66 64.66
LR, GPU(ms) 16.53 13.76 9.22 3.58
HR, GPU(ms) 48.96 148.02 106.82 17.23
Parameter(M) 1.68 11.38 11.13 1.48

Table 1: Performance and model size comparison, LR
means 256*256 resolution, HR means 720*1280 resolution

to optimize both networks. Learning rate and batch size are
set to 2 ∗ 10−4 and 16 during training. We at first pre-train
the generator with the content loss for 50000 iterations, and
then jointly optimize the GAN based framework. Training
is stopped after 100000 iterations or on convergency.

Hyper-parameters All results shown in this paper, un-
less specially mentioned, are generated with λ1 = 1, λ2 =
10, λ3 = 2 ∗ 103, λ4 = 2 ∗ 103, λ5 = 104. The setting is
based on the statistic of the training dataset. As our method
is data-driven, the neural networks can adaptively learn the
visual constitutes even if parameters are coarsely defined.

Dataset. Human face and landscape data are collected
for generalization on diverse scenes. For real-world photos,
we collect 10000 images from the FFHQ dataset [22] for
the human face and 5000 images from the dataset in [48]
for landscape. For cartoon images, we collect 10000 images
from animations for the human face and 10000 images for
landscape. Producers of collected animations include Kyoto
animation, P.A.Works, Shinkai Makoto, Hosoda Mamoru,
and Miyazaki Hayao. For the validation set, we collect
3011 animation images and 1978 real-world photos. Im-
ages shown in the main paper are collected from the DIV2K
dataset [3], and images in user study are collected from the
Internet and Microsoft COCO [27] dataset. During train-
ing, all images are resized to 256*256 resolution, and face
images are feed only once in every five iterations.

Previous Methods. We compare our method with four
algorithms that represent Neural Style Transfer [20], Image-
to-Image Translation [48], Image Abstraction [21] and Im-
age Cartoonization [6] respectively.

Evaluation metrics. In qualitative experiments, we
present results with details of four different methods and
original images, as well as qualitative analysis. In quantita-
tive experiments, we use Frechet Inception Distance (FID)
[15] to evaluate the performance by calculating the distance
between source image distribution and target image distri-
bution. In the user study, candidates are asked to rate the
results of different methods between 1 to 5 in cartoon qual-
ity and overall quality. Higher scores mean better quality.

Time Performance and Model Size. Speeds of four
methods are compared on different hardware and shown in
Table 1. Our model is the fastest among four methods on
all devices and all resolutions, and has the smallest model
size. Especially, our model can process a 720*1280 image
on GPU within only 17.23ms, which enables it for real-time
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Figure 7: Results of our method in different scenes. Zoom in for details

(b) More Texture (c) More Structure (d) More Surface(a) Input Photo

Figure 8: Output quality could be controlled by adjusting
weight of each representation. Zoom in for details.

High-Resolution video processing tasks.
Generality to diverse use cases. We apply our model on

diverse real-world scenes, including natural landscape, city
views, people, animals, and plants, and show the results in
Figure 7. More examples of different styles and diverse use
cases are shown in the supplementary material.

4.2. Validation of Cartoon Representations.
To validate our proposed cartoon representations reason-

able and effective, a classification experiment and a quan-
titative experiment based on FID are conducted, and the
results are shown in Table 2. We train a binary classifier
on our training dataset to distinguish between real-world
photos and cartoon images. The classifier is designed by
adding a fully-connected layer to the discriminator in our
framework. The trained classifier is then evaluated on the
validation set to validate the influence of each cartoon rep-

No. Surface Structure Texture Original
Acc 0.8201 0.6342 0.8384 0.9481
FID 113.57 112.86 112.71 162.89

Table 2: Classification accuracy and FID evaluation of our
proposed cartoon representation.

resentation.
We find the extracted representations successfully fool

the trained classifier, as it achieves lower accuracy in all
three extracted cartoon representations compared to the
original images. The calculated FID metrics also support
our proposal that cartoon representations help close the gap
between real-world photos and cartoon images, as all three
extracted cartoon representations have smaller FID com-
pared to the original images.

4.3. Illustration of Controllability
As is shown in Figure 8, the style of cartoonized results

could be adjusted by turning the weight of each representa-
tion in the loss function. Increase the weight of texture rep-
resentation adds more details in the images, rich details such
as grassland and stones are preserved. This is because it reg-
ulates dataset distributions and enhances high-frequency de-
tails stored in texture representation. Smoother textures and
fewer details are generated with a higher weight of surface
representation, the details of the cloud and the mountain
are smoothed. The reason is that guided filtering smooths
training samples and reduces densely textured patterns. To
get more abstract and sparse features, we can increase the
weight of structure representation, and the details of the



(a) Photo (b) Fast Neural Style (c) Image Abstraction (d) CycleGAN (d) Ours

(e) Photo (f) Paprika Style (g) Shinkai Style (h) Hosoda Style (j) Ours(i) Hayao Style

Figure 9: Qualitative comparison, Second raw shows 4 different styles of CartoonGAN [6].

Methods Photo Fast Neural Style [20] CycleGAN [48] Image Abstraction [21] Ours
FID to Cartoon 162.89 146.34 141.50 130.38 101.31
FID to Photo N/A 103.48 122.12 75.28 28.79

Methods Shinkai style of [6] Hosoda style of [6] Hayao style of [6] Paprika style of [6] Ours
FID to Cartoon 135.94 130.76 127.35 127.05 101.31
FID to Photo 37.96 58.13 86.48 118.56 28.79

Table 3: Performance evaluation based on FID

mountains are abstracted into sparse color blocks. This is
because the selective search algorithm flattens the training
data and abstract them into structure representations. To
conclude, unlike black-box models, our white-box method
is controllable and can be easily adjusted.

4.4. Qualitative Comparison
Comparisons between our method and previous methods

are shown in Figure 9. The white-box framework helps gen-
erate clean contours. Image abstraction causes noisy and
messy contours, and other previous methods fail to gener-
ate clear borderlines, while our method has clear bound-
aries, such as human face and clouds. Cartoon represen-
tations also help keep color harmonious. CycleGAN gen-
erates darkened images and Fast Neural Style causes over-
smoothed color, and CartoonGAN distorts colors like hu-
man faces and ships. Our method, on the contrary, pre-
vents improper color modifications such as faces and ships.
Lastly, our method effectively reduces artifacts while pre-
serves fine details, such as the man sitting on the stone,
but all other methods cause over-smoothed features or dis-

tortions. Also, methods like CycleGAN, image abstrac-
tion and some style of CartoonGAN cause high-frequency
artifacts. To conclude, our method outperforms previous
methods in generating images with harmonious color, clean
boundaries, fine details, and fewer noises.

4.5. Quantitative Evaluation
Frechet Inception Distance (FID) [15] is wildly-used to

quantitatively evaluate the quality of synthesized images.
Pre-trained Inception-V3 model [36] is used to extract high-
level features of images and calculate the distance between
two image distributions. We use FID to evaluate the perfor-
mance of previous methods and our method. As Cartoon-
GAN models have not been trained on human face data, for
fair comparisons, we only calculate FID on scenery dataset.

As is shown in Table 3, our method generates images
with the smallest FID to cartoon image distribution, which
proves it generates results most similar to cartoon images.
The output of our method also has the smallest FID to real-
world photo distribution, indicating that our method loyally
preserves image content information.



(a) Original Photo (b) W/O Texture Representation (c) W/O Structure Representation (d) W/O Surface Representation (e) Full Model

Figure 10: Ablation study by removing each component

Methods [20] [6] [48] Ours
Cartoon quality, mean 2.347 2.940 2.977 4.017
Cartoon quality, std 1.021 1.047 1.437 0.962

Overall quality, mean 2.38 2.937 2.743 3.877
Overall quality, std 0.993 1.046 1.321 0.982

Table 4: Result of User study, higher score means better
quality. Row 1 and 2 represent the mean and standard error
of Cartoon quality score, row 3 and 4 represent the mean
and standard error of Overall quality score.

4.6. User Study
The quality of Image cartoonization is highly subjective

and greatly influenced by individual preference. We con-
ducted user studies to show how users evaluate our method
and previous methods. The user study involves 30 images,
each processed by our proposed method and three previous
methods. Ten candidates are asked to rate every image be-
tween 1-5 in 2 dimensions, following the criterion below:
Cartoon quality: users are asked to evaluate how similar
are the shown images and cartoon images.
Overall quality: users are asked to evaluate whether there
are color shifts, texture distortions, high-frequency noises,
or other artifacts they dislike on the images.

We collect 1200 scores in total, and show the average
score and standard error of each algorithm Table 4. Our
method outperforms previous methods in both cartoon qual-
ity and overall quality, as we get higher scores in both cri-
teria. This is because our proposed representations effec-
tively extracted cartoon features, enabling the network to
synthesize images with good quality. The synthesis qual-
ity of our method is also the most stable, as our method
has the smallest standard error in both criteria. The reason
is that our method is controllable and can be stabilized by
balancing different components. To conclude, our method
outperforms all previous methods shown in the user study.

4.7. Analysis of Each Components
We show the results of ablation studies in Figure 10.

Ablating the texture representation causes messy details.

Shown in Figure 10(a), irregular textures on the grassland
and the dog’s leg remains. This is due to the lack of high-
frequency stored in the surface representation, which deteri-
orates the model’s cartoonization ability. Ablating the struc-
ture representation causes high-frequency noises in Figure
10(b). Severe pepper-and-salt appear on the grassland and
the mountain. This is because the structure representation
flattened images and removed high-frequency information.
Ablating the surface representation causes both noise and
messy details. Unclear edges of the cloud and noises on
the grassland appear in Figure 10(c). The reason is that
guided filtering suppresses high-frequency information and
preserves smooth surfaces. As a comparison, the results
of our full model are shown in Figure 10(d), which have
smooth features, clear boundaries, and much less noise. In
conclusion, all three representations help improve the car-
toonizaiton ability of our method.

5. Conclusion
In this paper, we propose a white-box controllable image

cartoonization framework based on GAN, which can gener-
ate high-quality cartoonized images from real-world photos.
Images are decomposed into three cartoon representations:
the surface representation, the structure representation, and
the texture representation. Corresponding image process-
ing modules are used to extract three representations for
network training, and output styles could be controlled by
adjusting the weight of each representation in the loss func-
tion. Extensive quantitative and qualitative experiments, as
well as user studies, have been conducted to validate the
performance of our method. Ablation studies are also con-
ducted to demonstrate the influence of each representation.
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